รุ่น เช่น as เฉลี่ยเคลื่อนที่ ชี้แจง ความเรียบเนียน และ เส้น แนวโน้ม การใช้งาน เท่านั้น


วิธีการของซีรีส์เวลาวิธีการแบบอนุกรมเป็นเทคนิคสถิติที่ใช้ข้อมูลประวัติที่สะสมในช่วงเวลาหนึ่ง วิธีการแบบอนุกรมเวลาสมมติว่าสิ่งที่เกิดขึ้นในอดีตจะยังคงเกิดขึ้นต่อไปในอนาคต เป็นชุดเวลาชื่อแนะนำวิธีการเหล่านี้เกี่ยวข้องกับการคาดการณ์เพียงหนึ่งปัจจัยเวลา ซึ่งรวมถึงค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยที่ชี้แจงและเส้นแนวโน้มเชิงเส้นและเป็นหนึ่งในวิธีที่ได้รับความนิยมมากที่สุดสำหรับการคาดการณ์ในระยะสั้นระหว่าง บริษัท ผู้ให้บริการและ บริษัท ผู้ผลิต วิธีการเหล่านี้สมมติว่ารูปแบบทางประวัติศาสตร์ที่ระบุหรือแนวโน้มสำหรับความต้องการในช่วงเวลาที่จะทำซ้ำตัวเอง Moving Average การคาดการณ์ชุดข้อมูลอนุกรมเวลาอาจทำได้เพียงง่ายๆโดยใช้ความต้องการในช่วงเวลาปัจจุบันเพื่อคาดการณ์ความต้องการในช่วงต่อไป นี่คือบางครั้งเรียกว่าการคาดเดาที่ไร้เดียงสาหรือใช้งานง่าย 4 ตัวอย่างเช่นถ้าความต้องการเป็น 100 หน่วยในสัปดาห์นี้การคาดการณ์สำหรับความต้องการในสัปดาห์หน้าคือ 100 หน่วยถ้าความต้องการเปลี่ยนเป็น 90 หน่วยแทนแล้วความต้องการสัปดาห์ต่อไปคือ 90 หน่วยและอื่น ๆ วิธีการคาดการณ์ประเภทนี้ไม่ได้คำนึงถึงพฤติกรรมความต้องการในอดีตที่ต้องอาศัยความต้องการในช่วงเวลาปัจจุบัน มันตอบสนองโดยตรงกับปกติการเคลื่อนไหวแบบสุ่มในความต้องการ วิธีเฉลี่ยเคลื่อนที่แบบง่ายใช้ค่าความต้องการหลายค่าในช่วงไม่กี่ปีที่ผ่านมาเพื่อพัฒนาการคาดการณ์ นี้มีแนวโน้มที่จะชุบหรือเรียบออกเพิ่มขึ้นสุ่มและลดลงของการคาดการณ์ที่ใช้เวลาเพียงหนึ่ง ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายมีประโยชน์ในการคาดการณ์ความต้องการที่มีเสถียรภาพและไม่แสดงพฤติกรรมความต้องการที่เด่นชัดเช่นแนวโน้มหรือรูปแบบตามฤดูกาล ค่าเฉลี่ยเคลื่อนที่จะคำนวณเป็นระยะเวลาหนึ่งเช่นสามเดือนหรือห้าเดือนขึ้นอยู่กับระยะเวลาที่นักพยากรณ์ต้องการให้ข้อมูลความต้องการที่ราบรื่น ระยะเวลาเฉลี่ยที่ยาวนานขึ้นจะยิ่งนุ่มนวลขึ้น บริษัท เครื่องคิดเลขออฟฟิศออฟฟิศซัพพลายขายและส่งมอบเครื่องใช้สำนักงานไปยัง บริษัท โรงเรียนและหน่วยงานต่างๆภายในรัศมี 50 ไมล์จากคลังสินค้าของ บริษัท ค่าเฉลี่ยคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ ธุรกิจจัดหาสำนักงานมีความสามารถในการแข่งขันและความสามารถในการส่งมอบคำสั่งซื้อได้อย่างทันท่วงทีเป็นปัจจัยในการสร้างลูกค้ารายใหม่ ๆ และรักษาตัวให้อยู่ในระดับเดิม (สำนักงานมักจะสั่งไม่เมื่อพวกเขาทำงานต่ำในวัสดุสิ้นเปลือง แต่เมื่อพวกเขาหมดสิ้นผลเป็นผลให้พวกเขาต้องการคำสั่งของพวกเขาทันที) ผู้จัดการของ บริษัท ต้องการที่จะมีไดรเวอร์เพียงพอและยานพาหนะบางพร้อมที่จะส่งมอบคำสั่งซื้อทันทีและ พวกเขามีสต็อคเพียงพอในสต็อก ดังนั้นผู้จัดการต้องการคาดการณ์จำนวนคำสั่งซื้อที่จะเกิดขึ้นในเดือนถัดไป (เช่นคาดการณ์ความต้องการในการจัดส่ง) จากบันทึกคำสั่งซื้อการจัดการได้รวบรวมข้อมูลต่อไปนี้ไว้ในช่วง 10 เดือนที่ผ่านมาซึ่งต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ 3 และ 5 เดือน สมมติว่าเป็นวันสิ้นเดือนตุลาคม การคาดการณ์ที่เกิดจากค่าเฉลี่ยเคลื่อนที่ 3 หรือ 5 เดือนโดยทั่วไปสำหรับเดือนถัดไปตามลำดับซึ่งในกรณีนี้คือเดือนพฤศจิกายน ค่าเฉลี่ยเคลื่อนที่จะคำนวณจากความต้องการคำสั่งซื้อสำหรับงวด 3 เดือนก่อนตามลำดับตามสูตรต่อไปนี้: ค่าเฉลี่ยเคลื่อนที่ 5 เดือนคำนวณจากข้อมูลความต้องการ 5 เดือนก่อนหน้านี้ ได้แก่ 3- และ 5 เดือน การคาดการณ์ค่าเฉลี่ยเคลื่อนที่สำหรับเดือนทั้งหมดของข้อมูลความต้องการจะแสดงในตารางต่อไปนี้ จริงๆแล้วการคาดการณ์สำหรับเดือนพฤศจิกายนตามความต้องการรายเดือนล่าสุดจะถูกใช้โดยผู้จัดการ อย่างไรก็ตามการคาดการณ์ก่อนหน้านี้สำหรับเดือนก่อน ๆ ช่วยให้เราสามารถเปรียบเทียบการคาดการณ์กับความต้องการที่แท้จริงเพื่อดูว่าวิธีการพยากรณ์ถูกต้องอย่างไรนั่นคือทำได้ดีแค่ไหน ค่าเฉลี่ยทั้งสามและห้าเดือนทั้งสองค่าเฉลี่ยของการคาดการณ์ในตารางด้านบนมีแนวโน้มที่จะทำให้ความแปรปรวนเกิดขึ้นได้ในข้อมูลที่เกิดขึ้นจริง ผลการปรับให้เรียบนี้สามารถสังเกตได้จากตัวเลขต่อไปนี้ซึ่งเป็นข้อมูลเฉลี่ยของ 3 เดือนและ 5 เดือนในกราฟของข้อมูลเดิม: ค่าเฉลี่ยเคลื่อนที่ 5 เดือนในรูปก่อนหน้านี้ช่วยขจัดความผันผวนได้มากกว่า ค่าเฉลี่ยเคลื่อนที่ 3 เดือน อย่างไรก็ตามค่าเฉลี่ยในรอบ 3 เดือนสะท้อนให้เห็นถึงข้อมูลล่าสุดที่มีให้กับผู้จัดการฝ่ายจัดหาสำนักงานมากที่สุด โดยทั่วไปการคาดการณ์โดยใช้ค่าเฉลี่ยเคลื่อนที่ในระยะยาวจะตอบสนองต่อการเปลี่ยนแปลงความต้องการล่าสุดได้ช้ากว่าที่คาดการณ์ไว้โดยใช้ค่าเฉลี่ยเคลื่อนที่ที่สั้นลง ช่วงเวลาที่เพิ่มขึ้นของข้อมูลจะส่งผลต่อความเร็วที่คาดการณ์ไว้ การสร้างจำนวนระยะเวลาที่เหมาะสมเพื่อใช้ในการคาดการณ์โดยเฉลี่ยที่เคลื่อนที่มักต้องการการทดลองใช้และทดสอบข้อผิดพลาดจำนวนมาก ข้อเสียของวิธีเฉลี่ยเคลื่อนที่คือไม่ตอบสนองต่อการเปลี่ยนแปลงที่เกิดขึ้นด้วยเหตุผลเช่นรอบการทำงานและผลตามฤดูกาล ปัจจัยที่ทำให้เกิดการเปลี่ยนแปลงโดยทั่วไปจะถูกเพิกเฉย เป็นวิธีการเชิงกลซึ่งสะท้อนถึงข้อมูลทางประวัติศาสตร์อย่างสม่ำเสมอ อย่างไรก็ตามวิธีเฉลี่ยเคลื่อนที่จะมีข้อดีคือใช้งานง่ายรวดเร็วและไม่แพงนัก โดยทั่วไปวิธีการนี้สามารถให้การคาดการณ์ที่ดีในระยะสั้น แต่ไม่ควรผลักดันให้ไกลเกินไป Weighted Moving Average วิธีถัวเฉลี่ยถ่วงน้ำหนักสามารถปรับเปลี่ยนเพื่อสะท้อนความผันผวนของข้อมูลได้มากขึ้น ในวิธีถัวเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักน้ำหนักจะถูกกำหนดให้กับข้อมูลล่าสุดตามสูตรต่อไปนี้: ข้อมูลความต้องการสำหรับ PM Computer Services (แสดงในตารางสำหรับตัวอย่าง 10.3) ดูเหมือนจะทำตามแนวโน้มเชิงเส้นที่เพิ่มขึ้น บริษัท ต้องการคำนวณเส้นแนวโน้มเชิงเส้นเพื่อดูว่ามีความแม่นยำมากกว่าการคาดการณ์การปรับให้เรียบและชี้แจงที่ได้รับการพัฒนาขึ้นในตัวอย่าง 10.3 และ 10.4 หรือไม่ ค่าที่จำเป็นสำหรับการคำนวณกำลังสองน้อยที่สุดมีดังนี้: ใช้ค่าเหล่านี้พารามิเตอร์สำหรับเส้นแนวโน้มเชิงเส้นคำนวณดังนี้: ดังนั้นสมการเส้นแนวโน้มเส้นคือการคำนวณการคาดการณ์สำหรับรอบระยะเวลา 13 ให้ x 13 ในเส้นตรง เส้นแนวโน้ม: กราฟต่อไปนี้แสดงเส้นแนวโน้มเชิงเส้นเมื่อเทียบกับข้อมูลจริง เส้นแนวโน้มแสดงให้เห็นอย่างใกล้ชิดกับข้อมูลที่เกิดขึ้นจริงนั่นคือเหมาะที่จะเป็นรูปแบบการคาดการณ์ที่ดีสำหรับปัญหานี้ อย่างไรก็ตามข้อเสียของเส้นแนวโน้มคือว่ามันจะไม่ปรับตัวให้เข้ากับการเปลี่ยนแปลงของแนวโน้มเนื่องจากวิธีการคาดการณ์การทำให้ราบเรียบชี้แจงจะเป็นสมมติว่าการคาดการณ์ในอนาคตทั้งหมดจะเป็นไปตามเส้นตรง วิธีนี้ จำกัด การใช้วิธีนี้กับกรอบเวลาที่สั้นกว่าซึ่งคุณสามารถมั่นใจได้ว่าแนวโน้มจะไม่เปลี่ยนแปลง การปรับฤดูกาลเป็นฤดูกาลที่เพิ่มขึ้นและความต้องการลดลง รายการอุปสงค์จำนวนมากแสดงพฤติกรรมตามฤดูกาล ยอดขายเสื้อผ้าเป็นไปตามรูปแบบฤดูกาลประจำปีโดยมีความต้องการเสื้อผ้าอุ่น ๆ เพิ่มขึ้นในช่วงฤดูใบไม้ร่วงและฤดูหนาวและลดลงในช่วงฤดูใบไม้ผลิและฤดูร้อนเนื่องจากความต้องการเสื้อผ้าเพิ่มขึ้น ความต้องการสินค้าปลีกจำนวนมากรวมทั้งของเล่นอุปกรณ์กีฬาเสื้อผ้าเครื่องใช้ไฟฟ้าแฮมตุรกีไวน์และผลไม้เพิ่มขึ้นในช่วงเทศกาลวันหยุด ความต้องการบัตรอวยพรเพิ่มขึ้นควบคู่ไปกับวันพิเศษเช่นวันวาเลนไทน์และวันแม่ รูปแบบตามฤดูกาลอาจเกิดขึ้นได้ทุกเดือนรายสัปดาห์หรือแม้แต่รายวัน ร้านอาหารบางแห่งมีความต้องการสูงกว่าช่วงกลางวันหรือในช่วงสุดสัปดาห์ซึ่งไม่ใช่วันธรรมดา การจราจร - เพราะฉะนั้นการขาย - ที่ห้างสรรพสินค้าหยิบขึ้นมาในวันศุกร์และวันเสาร์ มีหลายวิธีในการสะท้อนรูปแบบตามฤดูกาลในการคาดการณ์ชุดข้อมูลแบบอนุกรม เราจะอธิบายหนึ่งในวิธีที่ง่ายขึ้นโดยใช้ปัจจัยตามฤดูกาล ปัจจัยตามฤดูกาลคือค่าตัวเลขที่คูณด้วยการคาดการณ์ตามปกติเพื่อให้ได้รับการคาดการณ์ตามฤดูกาล วิธีหนึ่งในการพัฒนาความต้องการปัจจัยตามฤดูกาลคือการแบ่งความต้องการสำหรับแต่ละฤดูกาลตามความต้องการโดยรวมประจำปีตามสูตรต่อไปนี้: ปัจจัยฤดูกาลตามฤดูกาลระหว่าง 0 ถึง 1.0 เป็นผลส่วนหนึ่งของความต้องการรายปีทั้งหมดที่กำหนดให้ ในแต่ละฤดูกาล ปัจจัยฤดูกาลเหล่านี้คูณด้วยความต้องการที่คาดการณ์ไว้เป็นประจำทุกปีเพื่อให้ได้ผลตอบแทนที่ปรับตามฤดูกาลในแต่ละฤดูกาล การคำนวณการคาดการณ์ด้วยการปรับฤดูกาลฟาร์ม Wishbone Farm เติบโตขึ้นเพื่อขายไก่งวงให้กับ บริษัท แปรรูปเนื้อสัตว์ตลอดทั้งปี อย่างไรก็ตามในช่วงไตรมาสที่สี่ของปีพฤศจิกาจะมีฤดูกาลสูงสุดในช่วงเดือนตุลาคมถึงธันวาคม Wishbone Farms มีประสบการณ์ความต้องการไก่งวงในช่วง 3 ปีที่ผ่านมาแสดงไว้ในตารางต่อไปนี้เนื่องจากเรามีข้อมูลความต้องการยาวนานถึงสามปีเราจึงสามารถคำนวณหาปัจจัยตามฤดูกาลได้โดยแบ่งความต้องการรายไตรมาสทั้งหมดเป็นเวลาสามปีตามความต้องการทั้งหมดในช่วง 3 ปีที่ผ่านมา : ต่อไปเราต้องการเพิ่มความต้องการที่คาดการณ์ไว้สำหรับปีหน้าในปีพ. ศ. 2543 ตามปัจจัยต่างๆตามฤดูกาลเพื่อให้ได้ความต้องการที่คาดการณ์ไว้สำหรับแต่ละไตรมาส เพื่อให้บรรลุเป้าหมายนี้เราจำเป็นต้องมีการคาดการณ์ความต้องการสำหรับปี 2543 ในกรณีนี้เนื่องจากข้อมูลความต้องการในตารางดูเหมือนจะแสดงถึงแนวโน้มที่เพิ่มขึ้นโดยทั่วไปเราจะคำนวณเส้นแนวโน้มเชิงเส้นเป็นเวลาสามปีของข้อมูลในตารางเพื่อให้ได้ข้อมูลที่หยาบ ประมาณการคาดการณ์: ดังนั้นการคาดการณ์สำหรับปี 2000 คือ 58.17 หรือ 58,170 ไก่งวง เมื่อใช้การคาดการณ์รายปีของอุปสงค์นี้การคาดการณ์ที่ปรับฤดูกาลแล้ว SF i สำหรับปีพ. ศ. 2543 เป็นการเปรียบเทียบการคาดการณ์รายไตรมาสเหล่านี้กับค่าความต้องการที่แท้จริงในตารางพวกเขาดูเหมือนจะเป็นประมาณการประมาณการที่ค่อนข้างดีซึ่งสะท้อนถึงความแตกต่างตามฤดูกาลทั้งในข้อมูลและ แนวโน้มทั่วไปขึ้น 10-12 วิธีการเฉลี่ยเคลื่อนที่แบบเดียวกับที่อธิบายได้คือ 10-11 สิ่งที่ส่งผลต่อรูปแบบการทำให้เรียบแบบเลขแจงจะเพิ่มค่าคงที่ที่ราบเรียบได้ 10-14 การปรับความเปรียบต่างที่ปรับเปลี่ยนได้มีความแตกต่างจากการให้ความนุ่มนวลแบบเลขแจง 10-15 สิ่งที่กำหนดทางเลือกของการปรับให้เรียบคงที่สำหรับแนวโน้มในแบบจำลองการปรับรูปแบบเลขแจงแบบปรับ 10-16 ในตัวอย่างบทสำหรับวิธีการแบบอนุกรมเวลาการคาดการณ์เริ่มต้นถือว่าเป็นเช่นเดียวกับความต้องการที่แท้จริงในช่วงแรก แนะนำวิธีอื่น ๆ ที่อาจมีการคาดการณ์เริ่มต้นในการใช้งานจริง 10-17 รูปแบบการคาดการณ์ของเส้นแนวโน้มแบบเส้นแตกต่างจากแบบจำลองการถดถอยเชิงเส้นสำหรับการคาดการณ์ 10-18 ของแบบจำลองชุดเวลาที่นำเสนอในบทนี้รวมทั้งค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักการเพิ่มความลําชี้แจงเป็นทวีคูณและการปรับความเรียบที่เป็นเอกลัษณ์และเส้นแนวโน้มแบบเส้นตรงซึ่งคุณคิดว่าดีที่สุดด้วยเหตุใด 10-19 ข้อดีของการปรับความเปรียบเชิงเส้นทแยงมุมมีมากกว่าเส้นแนวโน้มเชิงเส้นสำหรับความต้องการที่คาดการณ์ไว้ซึ่งแสดงถึงแนวโน้ม 4 K. B. Kahn และ J. T. Mentzer การคาดการณ์ในตลาดผู้บริโภคและอุตสาหกรรมวารสารการพยากรณ์ธุรกิจ 14 ฉบับที่ 4 2 (ฤดูร้อน 1995): 21-28.MIS302 Ch. 4: การพยากรณ์ (1) การจัดการห่วงโซ่อุปทาน: ความสัมพันธ์กับผู้จัดจำหน่ายที่ดีข้อดีของนวัตกรรมผลิตภัณฑ์ต้นทุนและความเร็วในการตลาดขึ้นอยู่กับการคาดการณ์ที่ถูกต้อง (2) HR: การว่าจ้างการฝึกอบรมและการเลิกจ้างงานทั้งหมดขึ้นอยู่กับความต้องการที่คาดการณ์ไว้ (3) ความถนัด: การขาดแคลนกำลังการผลิตอาจส่งผลต่อการสูญเสียการส่งมอบที่ไม่อาจยอมรับได้ของลูกค้าและการสูญเสียส่วนแบ่งการตลาดค่าเฉลี่ยเคลื่อนที่ - การวิเคราะห์เชิงปริมาณ (แบบจำลองชุดเวลา) ใช้ค่าข้อมูลที่เป็นจริงในอดีตเพื่อสร้างการคาดการณ์ - เป็นประโยชน์หากเราสามารถคาดเดาได้ว่า (ความต้องการในช่วง n ก่อนหน้า) n โดยที่: n จำนวนงวดในค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยถ่วงน้ำหนัก - การวิเคราะห์เชิงปริมาณ (แบบจําลองอนุกรมเวลา) เมื่อตรวจพบได้ แนวโน้มหรือรูปแบบที่มีอยู่น้ำหนักสามารถนำมาใช้เพื่อให้ความสำคัญมากขึ้นกับค่าล่าสุด - ทำให้เทคนิคการคาดการณ์การตอบสนองต่อการเปลี่ยนแปลงมากขึ้นเนื่องจากงวดล่าสุดอาจจะหนักมากขึ้น ผลรวม (น้ำหนักการคำนวณค่าเฉลี่ยและรูปแบบการเรียบเนียนเป็นขั้นตอนแรกในการปรับปรุงรูปแบบการคาดเดาที่ไร้เดียงสารูปแบบและแนวโน้มทางเพศสามารถคาดการณ์ได้โดยใช้แบบจำลองที่เคลื่อนที่โดยเฉลี่ยหรือปรับให้ราบเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยที่เคลื่อนที่ (เช่นเฉพาะ) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้ค่านี้เป็นค่าพยากรณ์ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยกับแบบจำลองการเดินแบบสุ่ม ค่าเฉลี่ยเคลื่อนที่มักเรียกว่าเวอร์ชันเรียบของชุดต้นฉบับเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลทำให้การขยับตัวของกระแทกในชุดเดิม โดยการปรับระดับการทำให้ราบเรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราหวังว่าจะสามารถสร้างความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่มได้ รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยถ่วงน้ำหนักที่เท่ากัน (Simple (weight-weighted)) ค่าเฉลี่ยเคลื่อนที่: ที่นี่ Yacute (t) ที่มีการคาดการณ์ล่วงหน้าหนึ่งช่วงเวลาที่ทำในเวลา t-1 เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตล่าสุด k ค่าเฉลี่ยนี้อยู่ที่กึ่งกลาง t - (k1) 2 ซึ่งหมายความว่าการประมาณค่าเฉลี่ยของท้องถิ่นจะมีแนวโน้มที่จะล่าช้ากว่าค่าที่แท้จริงของค่าเฉลี่ยของท้องถิ่นโดยประมาณ (k1) 2 ช่วง ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (k1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหของข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า k1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า k มีขนาดใหญ่มาก (เทียบกับระยะเวลาในการประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นแบบปกติเพื่อให้ได้ข้อมูลที่เหมาะสมที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้ทำให้เกิดเสียงรบกวนมากขึ้นใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้งสัญญาณ (ค่าเฉลี่ยในท้องถิ่น) ถ้าเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 ช่วงทำให้ค่าผิดพลาดน้อยกว่าโมเดลแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากแบบจำลองการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด น่าสนใจข้อ จำกัด ด้านความเชื่อมั่นที่คำนวณโดย Statgraphics สำหรับการคาดการณ์ในระยะยาวของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะไม่ได้รับมากขึ้นเนื่องจากช่วงพยากรณ์อากาศที่เพิ่มขึ้น เห็นได้ชัดว่าไม่ถูกต้อง แต่น่าเสียดายที่ไม่มีทฤษฎีทางสถิติพื้นฐานที่บอกเราว่าช่วงความเชื่อมั่นควรจะกว้างขึ้นสำหรับรุ่นนี้อย่างไร ถ้าคุณจะใช้แบบจำลองนี้ในทางปฏิบัติคุณควรจะใช้ค่าประมาณเชิงประจักษ์ถึงขีดจำกัดความเชื่อมั่นสำหรับการคาดการณ์ระยะยาวของเส้นขอบฟ้า ตัวอย่างเช่นคุณสามารถตั้งค่าสเปรดชีตที่จะใช้โมเดล SMA เพื่อคาดการณ์ล่วงหน้า 2 ขั้นตอนล่วงหน้า 3 ก้าวเป็นต้นภายในตัวอย่างข้อมูลที่ผ่านมา จากนั้นคุณสามารถคำนวณส่วนเบี่ยงเบนมาตรฐานตัวอย่างของข้อผิดพลาดในขอบฟ้าพยากรณ์แต่ละครั้งและสร้างช่วงความเชื่อมั่นสำหรับการคาดการณ์ในระยะยาวโดยการเพิ่มและลบคูณของส่วนเบี่ยงเบนมาตรฐานที่เหมาะสม ถ้าเราลองค่าเฉลี่ยเคลื่อนที่ 9 วันเราจะได้รับการคาดการณ์ที่ราบรื่นขึ้นและผลกระทบที่ปกคลุมด้วยวัตถุฉนวน: อายุเฉลี่ยอยู่ที่ 5 ช่วงเวลา ((91) 2) ถ้าเราใช้ค่าเฉลี่ยเคลื่อนที่ในระยะ 19 วันอายุเฉลี่ยจะเพิ่มขึ้นเป็น 10: สังเกตว่าแท้จริงแล้วการคาดการณ์ในขณะนี้ล้าหลังจุดหักเหประมาณ 10 รอบ Browns Simple Exponential Smoothing (ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ชี้แจง) แบบจำลองค่าเฉลี่ยเคลื่อนที่แบบง่ายๆที่กล่าวมาข้างต้นมีคุณสมบัติที่ไม่พึงประสงค์ที่จะถือว่าข้อสังเกต k ล่าสุดอย่างเท่าเทียมกันและสมบูรณ์ละเว้นข้อสังเกตก่อนหน้าทั้งหมด โดยนัยข้อมูลที่ผ่านมาควรจะลดในรูปแบบที่ค่อยๆมากขึ้นตัวอย่างเช่นข้อสังเกตล่าสุดควรมีน้ำหนักมากกว่า 2 ครั้งล่าสุดและครั้งที่ 2 ล่าสุดควรมีน้ำหนักน้อยกว่า 3 ครั้งล่าสุดและ อื่น ๆ แบบเรียบง่าย (SES) ทำให้สำเร็จได้ อนุญาตให้แสดงค่าคงที่ที่ราบเรียบ (ตัวเลขระหว่าง 0 ถึง 1) และให้ S (t) แสดงถึงค่าของชุดที่ราบเรียบในช่วง t สูตรต่อไปนี้จะถูกใช้เพื่อปรับปรุงชุดที่ราบเรียบเนื่องจากมีการบันทึกข้อสังเกตใหม่: ดังนั้นค่าที่เรียบนวลในปัจจุบันคือการแก้ไขระหว่างค่าที่เรียบก่อนและการสังเกตการณ์ในปัจจุบันซึ่งจะควบคุมความใกล้ชิดของค่าที่ถูกสอดแทรกกับข้อสังเกตล่าสุด การคาดการณ์สำหรับงวดถัดไปเป็นเพียงค่าที่ได้รับการปรับปรุงให้เรียบในปัจจุบัน: (หมายเหตุ: จากนี้ไปเราจะใช้สัญลักษณ์ Yacute เพื่อคาดการณ์ช่วงเวลา Y เพราะ Yacute เป็นสิ่งที่ใกล้ที่สุดกับ y-hat ที่สามารถแสดงผลได้ (t1) Y (t) (1-) Yacute (t) (t) (t) (t) (t) (t) (t) (t) การคาดการณ์ระหว่างการคาดการณ์ก่อนหน้าและการสังเกตก่อนหน้าที่ Yacute (t1) Yacute (t) e (t) (t) Y (t) - Y (t) Yacute (t1) Y (t) - (1-) e (t) การคาดการณ์ที่คาดการณ์ล่วงหน้าและเศษของข้อผิดพลาดก่อนหน้า การคาดการณ์ที่คาดการณ์ล่วงหน้าลบเศษ 1 - ของข้อผิดพลาดก่อน Yacute (t1) Y (t) (1-) Y (t-1) ((1-) 2) Y (t-2) ((1-) 3) Y (t -3) . ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ (เช่นการลด) ค่าเฉลี่ยเคลื่อนที่โดยมีปัจจัยส่วนลด 1 - สมการทั้งสี่ข้างต้นมีค่าเทียบเท่าทางคณิตศาสตร์ทั้งหมดซึ่งสามารถหาได้จากการจัดเรียงใหม่ของทุกๆตัว สมการแรกข้างต้นน่าจะเป็นวิธีที่ง่ายที่สุดที่จะใช้หากคุณใช้โมเดลในสเปรดชีต: สูตรการคาดการณ์พอดีในเซลล์เดียวและมีการอ้างอิงเซลล์ชี้ไปที่การคาดการณ์ก่อนหน้าการสังเกตก่อนหน้านี้และเซลล์ที่มีค่าเป็น เก็บไว้ โปรดทราบว่าถ้า 1 รูปแบบ SES เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า 0 รูปแบบ SES จะเท่ากับรูปแบบค่าเฉลี่ยสมมติว่าค่าที่เรียบเป็นครั้งแรกจะเท่ากับค่าเฉลี่ย อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์การเรียบอย่างง่ายและชี้แจงคือ 1 เทียบกับช่วงเวลาที่คำนวณการคาดการณ์ (นี้ไม่ควรจะเป็นที่เห็นได้ชัด แต่ก็สามารถแสดงได้โดยการประเมินชุดอนันต์.) ดังนั้นการคาดการณ์เฉลี่ยเคลื่อนที่ง่ายมีแนวโน้มที่จะล่าช้าหลังจุดหักเหโดยประมาณ 1 งวด ตัวอย่างเช่นเมื่อ 0.5 ความล่าช้าเป็น 2 ช่วงเวลาเมื่อ 0.2 ความล่าช้าเป็น 5 ช่วงเวลาที่ 0.1 ล่าช้าเป็น 10 ช่วงเวลาและอื่น ๆ สำหรับอายุโดยเฉลี่ยที่ระบุ (เช่นจำนวนเงินที่ล่าช้า) การคาดการณ์การทำให้การทำให้ลื่นไหลเรียบแบบสมมุติแบบง่าย (SES) ค่อนข้างดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่อย่างง่าย (SMA) เนื่องจากมีน้ำหนักมากขึ้นในการสังเกตการณ์ล่าสุด - คือ มีการตอบสนองต่อการเปลี่ยนแปลงที่เกิดขึ้นในอดีตที่ผ่านมาเล็กน้อย ข้อได้เปรียบที่สำคัญอีกอย่างหนึ่งของแบบจำลอง SES ในรูปแบบ SMA ก็คือแบบจำลอง SES ใช้พารามิเตอร์การปรับให้ราบเรียบซึ่งเป็นตัวแปรที่ต่อเนื่องดังนั้นจึงสามารถปรับให้เหมาะสมได้โดยใช้อัลกอริธึม solver เพื่อลดข้อผิดพลาดของกำลังเฉลี่ย ค่าที่เหมาะสมที่สุดของแบบจำลอง SES สำหรับชุดข้อมูลนี้จะเท่ากับ 0.2961 ดังแสดงในที่นี้อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 10.2961 3.4 งวดซึ่งใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ 6-term ระยะสั้น การคาดการณ์ระยะยาวจากแบบจำลอง SES เป็นแนวเส้นตรง เช่นเดียวกับในรูปแบบ SMA และรูปแบบการเดินแบบสุ่มโดยไม่มีการเติบโต อย่างไรก็ตามโปรดทราบว่าช่วงความเชื่อมั่นที่คำนวณโดย Statgraphics จะแตกต่างกันไปในรูปแบบที่ดูสมเหตุสมผลและมีความแคบกว่าช่วงความเชื่อมั่นสำหรับรูปแบบการเดินแบบสุ่ม แบบจำลอง SES อนุมานได้ว่าชุดนี้สามารถคาดการณ์ได้มากกว่าแบบจำลองการเดินแบบสุ่ม แบบจำลอง SES เป็นกรณีพิเศษของรูปแบบ ARIMA ดังนั้นทฤษฎีสถิติของแบบจำลอง ARIMA จึงเป็นพื้นฐานที่ใช้ในการคำนวณระยะเวลาความเชื่อมั่นสำหรับโมเดล SES โดยเฉพาะอย่างยิ่งแบบจำลอง SES คือแบบจำลอง ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งข้อ MA (1) เทอมและไม่มีระยะคงที่ หรือที่เรียกว่าแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่ ค่าสัมประสิทธิ์ของ MA (1) ในรูปแบบ ARIMA สอดคล้องกับปริมาณ 1 ในแบบจำลอง SES ตัวอย่างเช่นถ้าคุณพอดีกับรูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่สำหรับชุดข้อมูลที่วิเคราะห์ที่นี่ค่าสัมประสิทธิ์ MA (1) โดยประมาณจะเท่ากับ 0.7029 ซึ่งเกือบจะเท่ากับ 0.2961 เป็นไปได้ที่จะเพิ่มสมมติฐานของแนวโน้มเชิงเส้นที่ไม่เป็นศูนย์ให้เป็นรูปแบบ SES ในการทำเช่นนี้ใน Statgraphics เพียงแค่ระบุรูปแบบ ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งและเทอม MA (1) ที่มีค่าคงที่คือโมเดล ARIMA (0,1,1) โดยมีค่าคงที่ การคาดการณ์ในระยะยาวจะมีแนวโน้มที่เท่ากับแนวโน้มเฉลี่ยที่สังเกตได้ในช่วงประมาณทั้งหมด คุณไม่สามารถดำเนินการนี้ควบคู่กับการปรับฤดูกาลได้เนื่องจากตัวเลือกการปรับฤดูกาลจะถูกปิดใช้งานเมื่อตั้งค่าประเภทของรูปแบบเป็น ARIMA อย่างไรก็ตามคุณสามารถเพิ่มแนวโน้มการชี้แจงในระยะยาวเป็นแบบจำลองการให้ความเรียบแบบเลขแจงที่เรียบง่าย (มีหรือไม่มีการปรับฤดูกาล) โดยใช้ตัวเลือกการปรับค่าเงินเฟ้อในขั้นตอนการคาดการณ์ อัตราเงินเฟ้อที่เหมาะสม (อัตราการเติบโตของเปอร์เซ็นต์) ต่องวดสามารถประมาณได้จากค่าสัมประสิทธิ์ความชันในรูปแบบเส้นตรงที่พอดีกับข้อมูลร่วมกับการแปลงลอการิทึมตามธรรมชาติหรืออาจขึ้นอยู่กับข้อมูลอื่น ๆ ที่เป็นอิสระเกี่ยวกับแนวโน้มการเติบโตในระยะยาว . Browns Linear (เช่น Double) การเรียบเนียนแบบ Exponential หากแนวโน้มและค่าเฉลี่ยมีความแตกต่างกันไปอย่างช้าๆเมื่อเวลาผ่านไปจำเป็นต้องมีรูปแบบการปรับให้เรียบเรียบขึ้นเพื่อให้เห็นถึงแนวโน้มที่แตกต่างกัน แบบจำลองแนวโน้มที่ง่ายที่สุดคือแบบ Browns linear mũ (LES) ซึ่งใช้ทั้งสองแบบที่เรียบเนียนแตกต่างกันไปตามจุดต่างๆในเวลา สูตรพยากรณ์ขึ้นอยู่กับการอนุมานของเส้นผ่านทั้งสองศูนย์ (อีกวิธีหนึ่งคือสามารถประยุกต์ใช้วิธีเฉลี่ยเคลื่อนที่แบบง่ายๆได้สองวิธีเพื่อติดตามแนวโน้มที่ต่างกันไปตามเวลา) ดูที่หน้า 154-158 ในตำราเรียนของคุณ) รูปแบบพีชคณิตของรูปแบบการเรียบแบบเสแสร้งเชิงเส้นเช่นเดียวกับการเรียบง่าย สามารถแสดงออกได้หลายรูปแบบ รูปแบบมาตรฐานของแบบจำลองนี้มักจะแสดงดังนี้ปล่อยให้ S หมายถึงชุดที่เรียบง่ายที่ได้จากการใช้การเรียบง่ายแบบเอกซ์โพเนนเชียลเป็นชุด Y นั่นคือค่าของ S ในช่วง t จะได้รับโดย: (จำได้ว่าภายใต้หลักการง่ายๆ เราจะปล่อยให้ Yacute (t1) S (t) ณ จุดนี้) จากนั้นให้ S หมายถึงชุดที่มีความลื่นไหลเป็นทวีคูณซึ่งได้จากการใช้การเรียบง่ายแบบเลขแจง (ใช้แบบเดียวกัน) กับชุด S: สุดท้ายการคาดการณ์ Yacute ( t1) ให้โดย: a (t) 2S (t) - S (t) ระดับที่ประมาณการไว้ในช่วง t การคาดการณ์ที่มีระยะเวลานำนานขึ้นในช่วง t จะได้รับโดยการเพิ่มทวีคูณของเทอมที่มีแนวโน้ม ตัวอย่างเช่นการคาดการณ์ k-period-ahead (เช่นการคาดการณ์สำหรับ Y (tk) ที่ทำในช่วง t) จะเท่ากับ (t) kb (t) สำหรับการจำลองแบบ (เช่นการคำนวณการคาดการณ์การตกค้างและสถิติตกค้างในช่วงประมาณ) รูปแบบสามารถเริ่มต้นได้โดยการตั้งค่า S (1) S (1) Y (1) กล่าวคือกำหนดทั้งสองชุดให้มีความราบรื่นเท่ากับ ค่าที่สังเกตได้ที่ t1 รูปแบบที่เทียบเท่าทางคณิตศาสตร์ของแบบจำลองการทำให้เรียบเน็ทไทม์ Browns ซึ่งเน้นตัวอักษรที่ไม่อยู่นิ่งและใช้งานง่ายในสเปรดชีตมีดังต่อไปนี้: กล่าวอีกนัยหนึ่งความแตกต่างที่คาดการณ์ไว้ในช่วง t (คือ Yacute (t) - Y ( t-1)) เท่ากับความแตกต่างที่สังเกตได้ก่อนหน้านี้ (คือ Y (t-1) - Y (t-2)) ลบข้อผิดพลาดที่คาดการณ์ไว้ก่อนหน้า ข้อควรระวัง: รูปแบบของรูปแบบนี้ค่อนข้างยุ่งยากที่จะเริ่มต้นขึ้นในช่วงเริ่มต้นของระยะเวลาการประมาณค่า แนะนำให้ใช้ชุดคำสั่งต่อไปนี้: ชุดแรก Yacute (1) Y (1) ซึ่งให้ผล e (1) 0 (เช่นโกงเล็กน้อยและให้การคาดการณ์ครั้งแรกเท่ากับการสังเกตครั้งแรกจริง) จากนั้นให้ตั้ง Yacute (2) Y (1) ซึ่งให้ค่า e (2) Y (2) - Y (1) จากนั้นให้ใช้สมการข้างต้นต่อไป นี่จะให้ค่าพอดีกับสูตรเดียวกันกับ S และ S ถ้าเริ่มใช้ S (1) S (1) Y (1) อีกครั้งคุณสามารถใช้สเปรดชีตแก้หรืออัลกอริทึมสี่เหลี่ยมน้อยที่ไม่เชิงเส้นเพื่อเพิ่มประสิทธิภาพของค่า ค่าที่เหมาะสมที่สุดในแบบจำลอง LES ที่ติดตั้งในชุดนี้โดย Statgraphics คือ 0.1607 โปรดทราบว่าการคาดการณ์ในระยะยาวของโมเดล LES สำหรับชุดข้อมูลในช่วงเวลานี้มีแนวโน้มที่จะติดตามแนวโน้มในท้องถิ่นที่สังเกตได้ในช่วง 10 ช่วงที่ผ่านมา นอกจากนี้ช่วงความเชื่อมั่นของโมเดล LES ยังขยายตัวได้เร็วกว่าโมเดล SES นี่คือรายงานการเปรียบเทียบรูปแบบสำหรับโมเดลที่อธิบายข้างต้น ปรากฏว่ารุ่น SES มีประสิทธิภาพดีกว่ารุ่น SMA และรุ่น LES อยู่ใกล้ ๆ ไม่ว่าคุณจะเลือก SES หรือ LES ในกรณีนี้จะขึ้นอยู่กับว่าคุณเชื่อหรือไม่ว่าซีรีส์มีแนวโน้มในระดับท้องถิ่น รูปแบบการปรับให้เรียบของ Browns แบบสมการกำลังสอง (เช่น Triple) ใช้ชุดสามแบบเรียบตรงกลางที่จุดต่างๆในเวลาและคาดการณ์พาราโบลาผ่านสามศูนย์ นี่เป็นเรื่องที่ไม่ค่อยนำมาใช้ในทางปฏิบัติแม้ว่าแนวโน้มที่แท้จริงของสมการกำลังสองจะหายากและแบบจำลองไม่เสถียรมากนัก การคาดการณ์ในรูปแบบใดที่ดีที่สุด: แนวนอน, เชิงเส้นหรือเป็นสองเท่าหลักฐานเชิงประจักษ์ชี้ให้เห็นว่าหากมีการปรับข้อมูลแล้ว (ถ้าจำเป็น) สำหรับอัตราเงินเฟ้ออาจเป็นไปได้ว่าจะไม่คาดการณ์ในระยะสั้น ) ในอนาคตอันใกล้นี้ แนวโน้มที่เห็นได้ชัดในวันนี้อาจลดลงในอนาคตอันเนื่องมาจากสาเหตุที่แตกต่างกันเช่นความล้าสมัยของผลิตภัณฑ์การแข่งขันที่เพิ่มขึ้นและการชะลอตัวของวัฏจักรหรือการปรับตัวในอุตสาหกรรม ด้วยเหตุนี้การเรียบง่ายแบบเสวนามักจะทำให้ได้ตัวอย่างที่ดีกว่าที่คาดคิดไว้แม้ว่าจะมีการอนุมานแนวโน้มในแนวนอนที่ไร้เดียงสา การปรับเปลี่ยนรูปแบบการลดลงของรูปแบบการเพิ่มประสิทธิภาพเชิงเส้นแบบเชิงเส้นมักใช้ในการปฏิบัติเพื่อนำบันทึกของอนุรักษนิยมไปสู่การคาดการณ์ของแนวโน้ม - อนิจจาเหล่านี้ไม่สามารถใช้งานได้ใน Statgraphics ในหลักการเป็นไปได้ในการคำนวณช่วงความเชื่อมั่นรอบการคาดการณ์ในระยะยาวที่ผลิตโดยแบบจำลองการทำให้เรียบโดยพิจารณาเป็นกรณีพิเศษของรูปแบบ ARIMA โดยเฉพาะอย่างยิ่งโปรแกรมพยากรณ์อากาศอัตโนมัติที่ได้รับความนิยมจำนวนมากใช้วิธีการที่น่าสงสัยสำหรับการคำนวณระยะเวลาความเชื่อมั่นสำหรับการคาดการณ์การให้ความเรียบแบบเป็นเอกลัษณ์) ความกว้างของช่วงความเชื่อมั่นขึ้นอยู่กับ (i) ข้อผิดพลาด RMS ของ (ii) ค่าของ (iii) ระดับการปรับให้เรียบ (เดี่ยวคู่หรือสาม) และ (iv) จำนวนรอบระยะเวลาที่คุณคาดการณ์ไว้ โดยทั่วไประยะห่างจะกระจายออกไปได้เร็วขึ้นเมื่อได้รับแรงกว่าหรือตามลำดับการเพิ่มความราบเรียบจากแบบเดี่ยวถึงสองเท่าถึงสามเท่า เราจะทบทวนเรื่องนี้อีกครั้งเมื่อเราพูดถึงแบบจำลอง ARIMA ในภายหลังโดยใช้แบบจำลองการปรับให้เรียบโดยเฉลี่ยและแบบเลขยกกำลังเป็นขั้นตอนแรกในการเคลื่อนย้ายโมเดลที่เป็นแบบจำลองแบบสุ่มและแบบเส้นแนวโน้มแบบไม่เป็นทางการและแนวโน้มสามารถอนุมานได้โดยใช้การเคลื่อนที่ รูปแบบการถ่วงหรือราบเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยเคลื่อนที่ (ท้องถิ่น) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้เป็นค่าพยากรณ์สำหรับอนาคตอันใกล้นี้ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยและแบบสุ่มโดยไม่มีการเลื่อนลอย กลยุทธ์เดียวกันสามารถใช้ในการประมาณและคาดการณ์แนวโน้มในท้องถิ่น ค่าเฉลี่ยเคลื่อนที่มักถูกเรียกว่า quotsmoothedquot version ของชุดเดิมเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลต่อการทำให้เรียบออกกระแทกในชุดเดิม โดยการปรับระดับการทำให้เรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราสามารถคาดหวังให้เกิดความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่ม รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยของค่าเฉลี่ยของ Y ที่เวลา t1 ที่ทำในเวลา t เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตการณ์ m ล่าสุด: (ที่นี่และที่อื่น ๆ ฉันจะใช้สัญลักษณ์ 8220Y-hat8221 เพื่อยืน สำหรับการคาดการณ์ของชุดข้อมูล Y เวลาที่เร็วที่สุดเท่าที่เป็นไปได้ก่อนวันที่โดยรูปแบบที่กำหนด) ค่าเฉลี่ยนี้เป็นศูนย์กลางในช่วง t - (m1) 2 ซึ่งหมายความว่าค่าประมาณของท้องถิ่นจะมีแนวโน้มลดลงหลังค่าจริง ค่าเฉลี่ยของท้องถิ่นโดยประมาณ (m1) 2 ช่วงเวลา ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (m1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหของข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า m1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า m มีขนาดใหญ่มาก (เทียบกับความยาวของระยะเวลาประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นเรื่องปกติที่จะได้รับข้อมูลที่ดีที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้จะทำให้ได้คำที่มีความหมายมากใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้ง quotsignalquot (ค่าเฉลี่ยในท้องถิ่น) ถ้าเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 เทอมทำให้เกิดข้อผิดพลาดอย่างมีนัยสำคัญน้อยกว่ารูปแบบการเดินแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากรูปแบบการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด The confidence limits computed by Statgraphics for the long-term forecasts of the simple moving average do not get wider as the forecasting horizon increases. This is obviously not correct Unfortunately, there is no underlying statistical theory that tells us how the confidence intervals ought to widen for this model. However, it is not too hard to calculate empirical estimates of the confidence limits for the longer-horizon forecasts. For example, you could set up a spreadsheet in which the SMA model would be used to forecast 2 steps ahead, 3 steps ahead, etc. within the historical data sample. You could then compute the sample standard deviations of the errors at each forecast horizon, and then construct confidence intervals for longer-term forecasts by adding and subtracting multiples of the appropriate standard deviation. If we try a 9-term simple moving average, we get even smoother forecasts and more of a lagging effect: The average age is now 5 periods ((91)2). If we take a 19-term moving average, the average age increases to 10: Notice that, indeed, the forecasts are now lagging behind turning points by about 10 periods. Which amount of smoothing is best for this series Here is a table that compares their error statistics, also including a 3-term average: Model C, the 5-term moving average, yields the lowest value of RMSE by a small margin over the 3-term and 9-term averages, and their other stats are nearly identical. So, among models with very similar error statistics, we can choose whether we would prefer a little more responsiveness or a little more smoothness in the forecasts. (Return to top of page.) Browns Simple Exponential Smoothing (exponentially weighted moving average) The simple moving average model described above has the undesirable property that it treats the last k observations equally and completely ignores all preceding observations. Intuitively, past data should be discounted in a more gradual fashion--for example, the most recent observation should get a little more weight than 2nd most recent, and the 2nd most recent should get a little more weight than the 3rd most recent, and so on. The simple exponential smoothing (SES) model accomplishes this. Let 945 denote a quotsmoothing constantquot (a number between 0 and 1). One way to write the model is to define a series L that represents the current level (i. e. local mean value) of the series as estimated from data up to the present. The value of L at time t is computed recursively from its own previous value like this: Thus, the current smoothed value is an interpolation between the previous smoothed value and the current observation, where 945 controls the closeness of the interpolated value to the most recent observation. The forecast for the next period is simply the current smoothed value: Equivalently, we can express the next forecast directly in terms of previous forecasts and previous observations, in any of the following equivalent versions. In the first version, the forecast is an interpolation between previous forecast and previous observation: In the second version, the next forecast is obtained by adjusting the previous forecast in the direction of the previous error by a fractional amount 945. is the error made at time t. In the third version, the forecast is an exponentially weighted (i. e. discounted) moving average with discount factor 1- 945: The interpolation version of the forecasting formula is the simplest to use if you are implementing the model on a spreadsheet: it fits in a single cell and contains cell references pointing to the previous forecast, the previous observation, and the cell where the value of 945 is stored. Note that if 945 1, the SES model is equivalent to a random walk model (without growth). If 945 0, the SES model is equivalent to the mean model, assuming that the first smoothed value is set equal to the mean. (Return to top of page.) The average age of the data in the simple-exponential-smoothing forecast is 1 945 relative to the period for which the forecast is computed. (This is not supposed to be obvious, but it can easily be shown by evaluating an infinite series.) Hence, the simple moving average forecast tends to lag behind turning points by about 1 945 periods. For example, when 945 0.5 the lag is 2 periods when 945 0.2 the lag is 5 periods when 945 0.1 the lag is 10 periods, and so on. For a given average age (i. e. amount of lag), the simple exponential smoothing (SES) forecast is somewhat superior to the simple moving average (SMA) forecast because it places relatively more weight on the most recent observation --i. e. it is slightly more quotresponsivequot to changes occuring in the recent past. For example, an SMA model with 9 terms and an SES model with 945 0.2 both have an average age of 5 for the data in their forecasts, but the SES model puts more weight on the last 3 values than does the SMA model and at the same time it doesn8217t entirely 8220forget8221 about values more than 9 periods old, as shown in this chart: Another important advantage of the SES model over the SMA model is that the SES model uses a smoothing parameter which is continuously variable, so it can easily optimized by using a quotsolverquot algorithm to minimize the mean squared error. The optimal value of 945 in the SES model for this series turns out to be 0.2961, as shown here: The average age of the data in this forecast is 10.2961 3.4 periods, which is similar to that of a 6-term simple moving average. The long-term forecasts from the SES model are a horizontal straight line . as in the SMA model and the random walk model without growth. However, note that the confidence intervals computed by Statgraphics now diverge in a reasonable-looking fashion, and that they are substantially narrower than the confidence intervals for the random walk model. The SES model assumes that the series is somewhat quotmore predictablequot than does the random walk model. An SES model is actually a special case of an ARIMA model. so the statistical theory of ARIMA models provides a sound basis for calculating confidence intervals for the SES model. In particular, an SES model is an ARIMA model with one nonseasonal difference, an MA(1) term, and no constant term . otherwise known as an quotARIMA(0,1,1) model without constantquot. The MA(1) coefficient in the ARIMA model corresponds to the quantity 1- 945 in the SES model. For example, if you fit an ARIMA(0,1,1) model without constant to the series analyzed here, the estimated MA(1) coefficient turns out to be 0.7029, which is almost exactly one minus 0.2961. It is possible to add the assumption of a non-zero constant linear trend to an SES model. To do this, just specify an ARIMA model with one nonseasonal difference and an MA(1) term with a constant, i. e. an ARIMA(0,1,1) model with constant. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. You cannot do this in conjunction with seasonal adjustment, because the seasonal adjustment options are disabled when the model type is set to ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. The appropriate quotinflationquot (percentage growth) rate per period can be estimated as the slope coefficient in a linear trend model fitted to the data in conjunction with a natural logarithm transformation, or it can be based on other, independent information concerning long-term growth prospects. (Return to top of page.) Browns Linear (i. e. double) Exponential Smoothing The SMA models and SES models assume that there is no trend of any kind in the data (which is usually OK or at least not-too-bad for 1-step-ahead forecasts when the data is relatively noisy), and they can be modified to incorporate a constant linear trend as shown above. What about short-term trends If a series displays a varying rate of growth or a cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more than 1 period ahead, then estimation of a local trend might also be an issue. The simple exponential smoothing model can be generalized to obtain a linear exponential smoothing (LES) model that computes local estimates of both level and trend. The simplest time-varying trend model is Browns linear exponential smoothing model, which uses two different smoothed series that are centered at different points in time. The forecasting formula is based on an extrapolation of a line through the two centers. (A more sophisticated version of this model, Holt8217s, is discussed below.) The algebraic form of Brown8217s linear exponential smoothing model, like that of the simple exponential smoothing model, can be expressed in a number of different but equivalent forms. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)

Comments